Natural Language Processing using Deep Learning

Cui i se adresează?

Acest curs se adresează Machine Learning Engineers.

Ce vei învăța?

În cadrul acestui curs, studenții vor învăța despre cele mai populare arhitecturi, incluzând Recurrent Natural Networks and Hidden Markov Models.

Cerințe preliminare:

Pentru a putea participa în cadrul acestui curs, studenții trebuie să fi parcurs modulul Basic Machine Learning in Tensorflow/Keras.

Este util ca participanții sa aibă următoarele cunoștințe:

Basic Deep Learning

● Neurons
● Types of Layers
● Networks
● Loss Functions
● Optimizers
● Overfitting
● Tensorflow

Basic Neural Language Processing

● Tokenization
● Bag of words
● tf-idf
● Stemming
● Lemmatization
● Language models
● Sentiment analysi

Agenda cursului:

Materialele de curs sunt în limba Engleză. Predarea se face în limba Română.

Module 1: NLP applications

Module 2: Word vectors

  • What are vectors?
  • Word analogies
  • TF-IDF and t-SNE
  • NLTK
  • GloVe
  • word2vec
  • Text classification using word vectors

Hands-on Lab: Performing a basic text classification using multiple word vectors models. Improve it by using basic text processing and language models to get the data ready for machine learning.

Module 3: Language modeling

  • Bigrams
  • Language models
  • Neural Network Bigram Model

Hands-on Lab: Performing text classification using neural networks based on language models. Understand the probabilistic modeling of language model, how to improve the context of a word and how synonyms can be generated and how basic neural networks generate powerful language models.

Module 4: Word Embeddings

  • CBOW
  • Skip-Gram
  • Negative Sampling

Hands-on Lab: Understand advanced techniques for language modeling like Skip-Gram and Negative Sampling by implementing them and learn to predict the next most likely word in a conversation.

Module 5: NLP techniques

  • What is POS Tagging?
  • POS Tagging Recurrent Neural Network
  • POS Tagging Hidden Markov Model (HMM)
  • Named Entity Recognition (NER)
  • POS vs. NER

Hands-on Lab: Use NLTK and SCIPY to improve your classification using grammar rules and POS, then use NER to highlight the most valuable content of a phrase, afterwards implement summarization.

Module 6: Recurrent Neural Networks

  • LSTM
  • GRU
  • Text Generation

Hands-on Lab: Implement in Keras a basic RNN architecture for word prediction, using the already studied word embeddings. Benchmark the performances of LSTM compared to GRU and BiLSTM.

Module 7: Generative Neural Networks

                Hands-on Lab: Implement in Keras your own generative model that generates lyrics similar to the ones from Shakespeare. Learn to make Transfer Learning on text.

Recomandăm să continui cu:

Programe de certificare

Natural Language Processing using Deep Learning

Oferte personalizate pentru grupuri de minim 2 persoane

Detalii curs

Durată:

2
zile

Preț:

840 EUR

Livrare:

Clasă virtuală

Nivel:

3. Advanced

Oferte personalizate pentru grupuri de minim 2 persoane